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1. Introduction

Classical string solutions play an important role in exploring the AdS/CFT correspondence

(see [1] and [2 – 4] for reviews). Generally speaking such solutions fall into two categories.

On the one hand there are closed string energy eigenstates in AdS, which are in corre-

spondence with gauge invariant operators of definite scaling dimension in the dual gauge

theory. On the other hand we can also consider open strings which end along some curve

on the boundary of AdS, corresponding to Wilson loops [5, 6].

An important example of the former is the so-called ‘giant magnon’ of Hofman and

Maldacena [7], which is dual to a single elementary excitation in the gauge theory picture.

More general states containing arbitrary numbers of bound or scattering states of magnons

correspond to more general classical string solutions [8 – 10]. These solutions can be con-

structed algebraically using the dressing method [10, 11], a well-known technique [12, 13]

for generating solutions of classically integrable equations.

In this paper we turn our attention to the latter, demonstrating the applicability of

the dressing method to the problem of constructing certain new Euclidean minimal area

surfaces in anti-de Sitter space.1 To apply the dressing method it is necessary to choose

some solution of the classical equations of motion to use as the ‘vacuum’, which is then

‘dressed’ to build more general solutions. For the giant magnon system considered in [10, 11]

it was natural to choose as vacuum the solution describing a pointlike string moving at

1The dressing method has also been used to construct Minkowskian worldsheets in de Sitter space [14, 15].
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Figure 1: The ‘giant gluon’ solution (3.1) in AdS3 global coordinates. The gluons follow the four

light-like segments on the boundary of AdS3 where the worldsheet ends.

the speed of light around the equator of the S5, since this state corresponds to the natural

vacuum in the spin chain picture.

For the present problem we choose as vacuum a particular solution, shown in figure 1,

originally used by Kruczenski [16] to study the cusp anomalous dimension via AdS/CFT. It

is the minimal area surface which meets the boundary of global AdS3 along four intersecting

light-like lines. This solution was recently generalized, and given a new interpretation, by

Alday and Maldacena [17], who gave a prescription for computing planar gluon scattering

amplitudes in N = 4 Yang-Mills at strong coupling using the AdS/CFT correspondence and

found perfect agreement with the structure predicted on the basis of previously conjectured

iteration relations for perturbative multiloop gluon amplitudes [18 – 22].

The Alday-Maldacena prescription is (classically) computationally equivalent to the

problem of evaluating a Wilson loop composed of light-like segments. According to the

AdS/CFT dictionary, such a Wilson loop is computed by evaluating the area of the surface

in figure 1. The interpretation of this surface in terms of a gluon scattering process suggests

calling this kind of solution a ‘giant gluon.’

We dress the giant gluon to find new minimal area surfaces in AdS3 and AdS5 whose

edges trace out more complicated, timelike curves on the boundary of AdS. It is not clear

– 2 –



J
H
E
P
1
2
(
2
0
0
7
)
0
4
7

whether these new solutions have any interpretation as a scattering process of the type

studied in [17], although they do have straightforward interpretations in terms of Wilson

loops. However, when calculating a Wilson loop one usually first specifies a curve on the

boundary of AdS and then finds the minimal area surface bounding that curve. In contrast,

the dressing method provides the minimal area surface without telling us the curve that it

spans, i.e. without telling us which Wilson loop it is calculating. That information must

be read off directly by analyzing the solution to see where it reaches the boundary of AdS,

a procedure that we will see is rather nontrivial.

The outline of this paper is as follows. In section 2 we demonstrate the applicability of

the dressing method, focusing on the AdS3 case which is simpler because there the problem

can be mapped into the SU(1,1) principal chiral model. In section 3 we discuss the dressed

giant gluon in AdS3, display explicit formulas for a special case of the solution, and analyze

in detail the edge of the worldsheet on the boundary of AdS3. In section 4 we turn to the

more complicated construction for AdS5 solutions using the SU(2,2)/SO(4,1) coset model,

and present some examples.

The main goal of this paper is to demonstrate the applicability of the dressing method.

Although we consider a few examples, they amount to only a small subset of the simplest

possible solutions. It would be very interesting to more fully explore the parameter space

of solutions that can be obtained. It would also be interesting to evaluate the (regulated)

areas of these solutions, thereby calculating the corresponding Wilson loops in gauge theory.

The giant gluon shown in figure 1 can actually be related [23], by analytic continuation

and a conformal transformation, to a closed string energy eigenstate (a limit of the GKP

spinning string [1]). It would be interesting to see whether it is possible to relate more

general Euclidean worldsheets of the type we consider to various closed string states.

2. AdS dressing method

The dressing method [12] is a general technique for constructing solutions of classically

integrable equations. As we review shortly, at the heart of the method lies the ability to

transform nonlinear equations of motion into a linear system for an auxiliary field. Here

we apply this very general method to the specific problem of constructing minimal area

Euclidean worldsheets in anti de-Sitter space. Initially we restrict our attention to AdS3,

where the problem relates to the SU(1,1) principal chiral model, deferring the slightly more

complicated AdS5 case to section 4. Many of the equations in this section are similar to

those appearing in [10, 11], which the reader may consult for further details. The two most

significant differences compared to the SU(2) principal chiral model considered in [10] are

that we use complex coordinates z, z̄ on the worldsheet, which is now Euclidean, and that

the indefinite SU(1,1) metric significantly changes the behavior of the solutions compared

to SU(2).

We parameterize AdSd with d + 1 embedding coordinates ~Y subject to the constraint

~Y · ~Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + · · · + Y 2
d−1 = −1. (2.1)
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Minimal area worldsheets are given by solutions to the conformal gauge equations of

motion

∂∂̄ ~Y − ~Y
(

∂~Y · ∂̄ ~Y
)

= 0 (2.2)

subject to the Virasoro constraints

∂~Y · ∂~Y = ∂̄ ~Y · ∂̄ ~Y = 0. (2.3)

Here and throughout the paper we use complex coordinates

z =
1

2
(u1 + iu2), z̄ =

1

2
(u1 − iu2), (2.4)

with

∂ = ∂1 − i∂2, ∂̄ = ∂1 + i∂2. (2.5)

Our first step is to recast the system (2.2), (2.3) into the form of a principal chiral

model for a matrix-valued field g satisfying the equation of motion

∂̄A + ∂Ā = 0 (2.6)

in terms of the currents

A = i∂g g−1, Ā = i∂̄g g−1. (2.7)

Note that the relation

∂̄A − ∂Ā − i[A, Ā] = 0 (2.8)

follows automatically from (2.7).

To see how this is done let us consider for simplicity first the AdS3 case. Here we use

the coordinates ~Y to parameterize an element g of SU(1,1) according to

g =

(

Z1 Z2

Z̄2 Z̄1

)

, Z1 = Y−1 + iY0, Z2 = Y1 + iY2, (2.9)

which satisfies

g†Mg = M, M =

(

+1 0

0 −1

)

(2.10)

and

det g = −~Y · ~Y = +1. (2.11)

It is easy to check that the systems (2.2), (2.3) and (2.6), (2.8) are equivalent to each

other under this change of variables.

Next we transform the nonlinear second-order system (2.6), (2.7) for g(z, z̄) into a

linear, first-order system for an auxiliary field Ψ(z, z̄, λ) at the expense of introducing

a new complex parameter λ called the spectral parameter. Specifically, the two equa-

tions (2.6), (2.7) are equivalent to

i∂Ψ =
AΨ

1 + iλ
, i∂̄Ψ =

ĀΨ

1 − iλ
. (2.12)
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For later convenience we have rescaled our definition of λ in this equation by a factor

of i compared to the conventions of [10, 11].

To apply the dressing method we begin with any known solution g (which we refer to

as the ‘vacuum’ for the dressing method, though we emphasize that any solution may be

chosen as the vacuum) and then solve the linear system (2.12) to find Ψ(λ) subject to the

initial condition

Ψ(λ = 0) = g. (2.13)

In addition we impose on Ψ(λ) the SU(1, 1) conditions

Ψ†(λ̄)MΨ(λ) = M, detΨ(λ) = 1. (2.14)

The purpose of the factor of i mentioned below (2.12) is to avoid the need to take −λ̄

instead of λ̄ in the first relation here.

Then we make a ‘gauge transformation’ of the form

Ψ′(λ) = χ(λ)Ψ(λ). (2.15)

If χ(λ) were independent of z and z̄ this would be an uninteresting SU(1,1) gauge

transformation. Instead we want χ(λ) to depend on z and z̄ but in such a way that Ψ′(λ)

continues to satisfy (2.12) and hence Ψ′(0) provides a new solution to (2.6), (2.8). For

AdS3 it is not hard to show that this is accomplished by taking χ(λ) to have the form

χ(λ) = 1 +
λ1 − λ̄1

λ − λ1

P (2.16)

where λ1 is an arbitrary complex parameter and P is a projection operator onto any vector

of the form v1 ≡ Ψ(λ̄1)v for any constant vector v. Concretely, P is therefore given by

P =
v1v

†
1M

v†1Mv1

. (2.17)

As in [10] there is a minor remaining detail that (2.16) has

det χ(λ) = λ̄1/λ1 (2.18)

so in order for g′ to lie in SU(1,1) rather than U(1,1) we should rescale g′ by the constant

phase factor
√

λ1/λ̄1 to ensure that it has unit determinant. To summarize, the desired

dressed solution is given by

g′ =

√

λ1

λ̄1

[

1 +
λ1 − λ̄1

−λ1

P

]

Ψ(0). (2.19)

The real embedding coordinates ~Y ′ of the dressed solution may then be read off from

g′ using the parameterization (2.9). The resulting solution is characterized by the complex

parameter λ1 and the choice of the constant vector v.
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3. AdS3 solutions

In this section we obtain new solutions for worldsheets in AdS3 via the dressing method,

taking as ‘vacuum’ the giant gluon solution [16, 17]

~Y =









Y−1

Y0

Y1

Y2









=









cosh u1 cosh u2

sinhu1 sinhu2

sinhu1 cosh u2

cosh u1 sinhu2









. (3.1)

Using the AdS3 parameterization (2.9) we find from (2.7) that

A = 2

(

− cosh u2 sinhu2 i cosh2 u2

i sinh2 u2 + cosh u2 sinhu2

)

,

Ā = 2 (− cosh u2 sinhu2 i sinh2 u2i cosh2 u2 + cosh u2 sinhu2 ) . (3.2)

Then a solution to the linear system (2.12) for Ψ(λ) is2

Ψ(λ) =

(

m− ch Z ch u2 + im+ sh Z shu2 m− shZ ch u2 + im+ ch Z shu2

m+ shZ ch u2 − im− ch Z shu2 m+ ch Z ch u2 − im− sh Z shu2

)

(3.3)

where

m+ = 1/m− =

(

1 + iλ

1 − iλ

)1/4

, Z = m2
−z + m2

+z̄. (3.4)

The solution (3.3) has been chosen to satisfy the desired constraints (2.14) as well as

the initial condition

Ψ(0) =

(

cosh u1 cosh u2 + i sinh u1 sinhu2 sinhu1 cosh u2 + i cosh u1 sinhu2

sinhu1 cosh u2 − i cosh u1 sinhu2 cosh u1 cosh u2 − i sinh u1 sinhu2

)

, (3.5)

correctly reproducing the giant gluon solution (3.1) embedded into SU(1,1) according

to (2.9). The dressed solution g′ is then given by (2.19).

3.1 A special case

Since the general solution is rather complicated, we present here an explicit formula for the

dressed solution for the particular choice of initial vector v = (1 i ), with λ1 arbitrary.

We find that the dressed SU(1,1) principal chiral field takes the form

g′ =

(

Z ′
1 Z ′

2

Z̄ ′
2 Z̄ ′

1

)

(3.6)

where

Z ′
1 =

1

|λ1|

~Y · ~N1

D
, Z ′

2 =
1

|λ1|

~Y · ~N2

D
(3.7)

2We will occasionally use sh, ch instead of sinh, cosh to compactify otherwise lengthy formulas.
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in terms of the numerator factors

~N1 =









−(λ̄1|m|2 − λ1) cosh(Z + Z̄) + i(λ̄1|m|2 + λ1) sinh(Z − Z̄)

−(λ1|m|2 + λ̄1) sinh(Z − Z̄) − i(λ1|m|2 − λ̄1) cosh(Z + Z̄)

(λ1 − λ̄1)m̄(sinh(Z + Z̄) − i cosh(Z − Z̄))

(λ1 − λ̄1)m(cosh(Z − Z̄) − i sinh(Z + Z̄))









,

~N2 =









−(λ1 − λ̄1)m̄(sinh(Z + Z̄) − i cosh(Z − Z̄))

−(λ1 − λ̄1)m(cosh(Z − Z̄) − i sinh(Z + Z̄))

+(λ̄1|m|2 − λ1) cosh(Z + Z̄) − i(λ̄1|m|2 + λ1) sinh(Z − Z̄)

+(λ1|m|2 + λ̄1) sinh(Z − Z̄) + i(λ1|m|2 − λ̄1) cosh(Z + Z̄)









, (3.8)

~Y given in (3.1), and the denominator

D = (|m|2 − 1) cosh(Z + Z̄) − i(|m|2 + 1) sinh(Z − Z̄). (3.9)

In these expressions

m =

(

1 + iλ1

1 − iλ1

)1/2

, m̄ =

(

1 − iλ̄1

1 + iλ̄1

)1/2

, (3.10)

and

Z = z/m + mz̄, Z̄ = z̄/m̄ + m̄z. (3.11)

The real embedding coordinates ~Y ′ of the dressed solution are easily read off from (3.6)

using (2.9). In figure 2 we plot a representative example of the solution (3.7). However

before one can make sense of the plot we must understand the behavior of (3.7) at the

boundary of AdS, which we address in the next subsection.

3.2 In search of the Wilson loop

Minimal area worldsheets in AdS5 are related to Wilson loops in the dual gauge theory [5, 6].

According to the AdS/CFT dictionary, in order to calculate the expectation value of the

Wilson loop for some closed path C on the boundary of AdS we should first find the minimal

area surface (or surfaces) in AdS which spans that curve and then calculate e−A where A

is the (regulated) area of the minimal surface.

The solutions we have obtained by the dressing method turn this procedure on its head.

In the previous subsection we displayed an explicit example of such a solution, which indeed

describes a minimal area Euclidean worldsheet in AdS3, but it is not immediately clear

what the corresponding curve C is whose Wilson loop the solution computes. In order

to answer this question we must look at (3.7) and find the locus C where the worldsheet

reaches the boundary of AdS3—this will tell us which Wilson loop we are computing.

In global AdS coordinates, the familiar radial coordinate ρ is related to the coordinates

appearing in (2.9) according to

cosh2 ρ = |Z1|
2, sinh2 ρ = |Z2|

2. (3.12)

Hence the boundary of AdS3 lies at Zi = ∞. Before proceeding with our complicated

dressed solution let us pause to note that the giant gluon solution (3.1) reaches the boundary

– 7 –
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Figure 2: An example of a surface described by the solution (3.7) for the particular choice λ1 =

1/2 + i/3.

of AdS3 precisely when |u1| → ∞ or |u2| → ∞. Moreover the four ‘edges’ of the worldsheet,

at u1 → +∞, u1 → −∞, u2 → +∞ and u2 → −∞, sit on four separate null lines on the

boundary of AdS3 which intersect each other at four cusps [16, 17] to form the closed curve

C.

Looking at the dressed solution (3.7) we see a feature which makes it significantly

more complicated to understand than the giant gluon. The presence of the nontrivial

denominator factor

D = (|m|2 − 1) cosh(Z + Z̄) − i(|m|2 + 1) sinh(Z − Z̄) (3.13)

in (3.7) means that the solution reaches the boundary of AdS3 any time D = 0, which

occurs at finite (rather than infinite) values of the worldsheet coordinates z, z̄. In fact

since D is periodic in Z (with period πi), the solution reaches the boundary of AdS3

infinitely many times as we allow z (and hence Z) to vary across the complex plane. It is

important to note that while D is periodic, the full solution is not.

If we define real variables Ui according to

Z = (U1 + iU2)/2, Z̄ = (U1 − iU2)/2 (3.14)

– 8 –
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then the locus C̃ of points on the worldsheet where the solution reaches the boundary of

AdS3 is

D = (|m|2 − 1) cosh U1 + (|m|2 + 1) sin U2 = 0. (3.15)

This equation describes an infinite array of oval-shaped curves C̃j periodically dis-

tributed along the U2 axis and centered at (U1, U2) = (0, 2πj + π/2). Note that the curves

C̃j in the worldsheet coordinates are not to be confused with their images Cj on the bound-

ary of AdS3 under the map (3.7). In particular the C̃j are unphysical artifacts of the

particular coordinate system we happen to be using on the worldsheet — only the curves

Cj on the boundary are physically meaningful.

To summarize, we find that the solution (3.7) actually describes not one but infinitely

many different minimal area surfaces in AdS3, each spanning a different curve Cj on the

boundary. In order to isolate any given worldsheet j we restrict the worldsheet coordinates

U1, U2 to range over the interior of the curve C̃j . In particular, in order to find the area of the

j-th worldsheet, and hence calculate the expectation value of the Wilson loop corresponding

to the curve Cj , one should integrate the induced volume element on the worldsheet only

over the region C̃j. It would be interesting to pursue this calculation further, although we

will not do so here.

3.3 A very special case

In the previous subsection we explained that the minimal area surfaces generated by the

dressing method actually calculate infinitely many different Wilson loops. In general the

solutions are sufficiently complicated that we find it necessary to analyze them numerically

(one example is shown in figure 3), but it is satisfying to analyze in detail one particularly

simple example based on the solution (3.7) which itself is already a special case of the most

general dressed solution.

Therefore we look now at the case λ1 = i. Since the solution naively looks singular at

this value we will carefully take the limit as λ1 → i from inside the unit circle. To this end

we consider

λ1 = ia, m =

√

1 − a

1 + a
(3.16)

in the limit a → 1. In this limit the equation for the boundary reduces to

cosh U1 = sin U2 (3.17)

whose solutions are just points in the (U1, U2) plane.

In order to isolate what is going on near the point (0, π/2) (for example) we should

rescale the worldsheet coordinates by defining new coordinates x, y according to

U1 = 2mx, U2 =
π

2
+ 2my (3.18)

Then in the limit a → 1 the equation becomes

0 = D = (1 − x2 − y2)(1 − a) + O(1 − a)2 (3.19)

– 9 –
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So now the edge of the worldsheet is the circle x2 + y2 = 1 in the (x, y) plane. Us-

ing (3.14) and (3.11) gives

u1 =
1

2
x(1 − a), u2 =

π

4a

√

1 − a2 +
1

2a
(1 − a)y. (3.20)

Plugging these values and (3.16) into the solution (3.7) we can then safely take a → 1,

obtaining the surface

Z1 = −i
1 + x2 + y2

1 − x2 − y2
, Z2 =

2ix − 2y

1 − x2 − y2
. (3.21)

Switching now to Poincaré coordinates (R,T,X) according to the usual embedding

Z1 =
1

2

(

1

R
+

R2 − T 2 + X2

R

)

+ i
T

R
, Z2 =

X

R
+

i

2

(

1

R
−

R2 − T 2 + X2

R

)

(3.22)

we find

R =
1 − x2 − y2

x
, T = −

1 + x2 + y2

x
, X = −

y

x
. (3.23)

Finally we note that this surface in AdS3 satisfies

−T 2 + X2 = −1 −
(1 − x2 − y2)2

4x2
. (3.24)

At the edge of the worldsheet the second term on the right-hand side is zero, so we

conclude that the solution (3.23) intersects the boundary of AdS3 along the curve described

by

−T 2 + X2 = −1. (3.25)

Interestingly this is a timelike curve whereas the giant gluon solution we started with

traces out a path of lightlike curves on the boundary.

More complicated cases must be studied numerically. In figure 3 we show the timelike

curve on the boundary of AdS3 that bounds the sample surface shown in figure 2.

4. AdS5 solutions

We now turn our attention to the dressing problem for worldsheets in AdS5. This case is

somewhat more complicated because it is not realized as a principal chiral model. Rather

we use the SU(2,2)/SO(4,1) coset model, parameterizing an element g of the coset in terms

of the embedding coordinates ~Y according to [24]

g =









0 +Z1 −Z3 +Z̄2

−Z1 0 +Z2 +Z̄3

+Z3 −Z2 0 −Z̄1

−Z̄2 −Z̄3 +Z̄1 0









(4.1)

where

Z1 = Y−1 + iY0, Z2 = Y1 + iY2, Z3 = Y3 + iY4. (4.2)

– 10 –
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Figure 3: In this plot we consider, as an example, the solution (3.7) for the particular case

λ1 = 1/2 + i/3. As explained in the text, the solution actually corresponds to infinitely many

Wilson loops on the boundary of AdS3, one of which is the curve shown here in the (X, T ) plane

on the boundary of AdS3 in Poincaré coordinates. The light-cone to which these timelike curves

asymptote is also shown. The Wilson loop is of course a closed curve; the upper and lower branches

shown here live on opposite sides of the AdS3 cylinder in global coordinates. The minimal area

surface spanning this curve is shown in figure 2.

This parameterization satisfies

gT = −g, g†Mg = M, (4.3)

where

M =









−1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 +1









(4.4)

and has determinant

det g = −~Y · ~Y = 1. (4.5)

Taking again the giant gluon solution (3.1) (supplemented with Y3 = Y4 = 0) as the

‘vacuum’ we now find that the solution to the linear system (2.12) is

Ψ(λ) =









0 + ch u1 ch U2 + im− sh u1 shU2

− ch U1 ch u2 − im+ shU1 sh u2 0

0 − shu1 ch U2 − im− ch u1 shU2

−m+ sh U1 ch u2 + i ch U1 sh u2 0

(4.6)

0 +m− shu1 ch U2 − i ch u1 shU2

+ shU1 ch u2 + im+ ch U1 sh u2 0

0 −m− ch u1 ch U2 + i sh u1 shU2

+m+ ch U1 ch u2 − i sh U1 sh u2 0









in terms of

U1 = m−z + m+z̄, U2 = (m−z − m+z̄)/i, m+ = 1/m− =

(

1 + iλ

1 − iλ

)1/2

. (4.7)
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The solution (4.6) has been chosen to satisfy the desired constraints

Ψ†(λ̄)MΨ(λ) = M, detΨ(λ) = 1 (4.8)

as well as the initial condition

Ψ(λ = 0) = g, (4.9)

where g is the giant gluon solution (3.1) written in the embedding (4.1). Note that the

symbols U1, U2 defined in (4.7) have been chosen because at λ = 0 they reduce to u1, u2.

4.1 Construction of the dressing factor

The dressing factor for this coset model takes the form

χ(λ) = 1 +
λ1 − λ̄1

λ − λ1

P1 +
1/λ1 − 1/λ̄1

λ + 1/λ̄1

P2. (4.10)

In order to satisfy all the constraints on the dressed solution, we choose P1 and P2 as

follows. First we choose P1 to be the hermitian (with respect to the metric M) projection

operator onto the vector v1 = Ψ(λ̄1)v, where v is an arbitrary complex constant vector.

Specifically, P1 is then given as in (2.17) by

P1 =
v1v

†
1M

v†1Mv1

, (4.11)

which satisfies

P 2
1 = P1, P †

1 = MP1M (4.12)

as desired. Next we choose

P2 = Ψ(0)PT
1 Ψ(0)−1. (4.13)

Because of (4.12) it is easy to check that P2 also satisfies

P 2
2 = P2, P †

2 = MP2M, (4.14)

so P2 is also a hermitian projection operator; in fact it is easy to check that P2 projects

onto the vector

v2 = Ψ(0)Mv1 (4.15)

and hence can be written as

P2 =
v2v

†
2M

v†2Mv2

. (4.16)

Now let us explain the choice (4.13). Notice that

v†2Mv1 = vT
1 MΨ(0)†Mv1 = vT

1 Ψ(0)−1v1 (4.17)

where we used Ψ(0)†MΨ(0) = M . But since Ψ(0) is antisymmetric, this is zero. So v2 and

v1 are orthogonal, and hence

P1P2 = P2P1 = 0. (4.18)
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Using all of the above relations one can check that (4.10) satisfies the conditions

[χ(λ̄)]†Mχ(λ) = M, ΨT(0)χT(0) = −χ(0)Ψ(0), (4.19)

which guarantee that the dressed solution Ψ′(λ) = χ(λ)Ψ(λ) continues to satisfy (4.3). As

in the AdS3 case we find that χ does not have unit determinant but rather

detχ(λ) =
λ − λ̄1

λ − λ1

λ − 1/λ1

λ − 1/λ̄1

. (4.20)

We must therefore rescale the dressed solution Ψ′(0) = χ(0)Ψ(0) by a factor of
√

λ1/λ̄1.

To summarize, the dressed solution g′ is given by

g′ =

√

λ1

λ̄1

[

1 +
λ1 − λ̄1

−λ1

P1 +
1/λ1 − 1/λ̄1

1/λ̄1

P2

]

Ψ(0) (4.21)

in terms of (4.6) and the projection operators (4.11), (4.13). The solution is characterized

by an arbitrary complex parameter λ1 and the choice of a complex four-component vector v.

4.2 A special case

Since the general solution is again rather complicated we display only a special case, choos-

ing the vector v = ( 1 i 0 0 ). We then find that the dressed solution g′ has the

form (4.1) with

Z ′
1 =

1

|λ1|

~Y · ~N1

D
, Z ′

2 =
1

|λ1|

~Y · ~N2

D
, Z ′

3 =
1

|λ1|

N3

D
(4.22)

in terms of the numerator factors

~N1 =









−|m|2λ̄1(ch U1 ch Ū1 + ch U2 ch Ū2) + λ1 shU1 sh Ū1 + |m|4λ1 shU2 sh Ū2

−i|m|2λ1(ch U1 ch Ū1 + ch U2 ch Ū2) + iλ̄1 shU1 sh Ū1 + i|m|4λ̄1 shU2 sh Ū2

−(λ1 − λ̄1)m̄ sh U1 ch Ū1 + i(λ1 − λ̄1)m̄|m|2 ch U2 sh Ū2

+i(λ1 − λ̄1)m ch U1 sh Ū1 − (λ1 − λ̄1)m|m|2 shU2 ch Ū2









,

~N2 =









−(λ1 − λ̄1)m̄ sh U1 ch Ū1 + i(λ1 − λ̄1)m̄|m|2 ch U2 sh Ū2

+i(λ1 − λ̄1)m ch U1 sh Ū1 − (λ1 − λ̄1)m|m|2 shU2 ch Ū2

−|m|2λ̄1(ch U1 ch Ū1 + ch U2 ch Ū2) + λ1 shU1 sh Ū1 + |m|4λ1 shU2 sh Ū2

−i|m|2λ1(ch U1 ch Ū1 + ch U2 ch Ū2) + iλ̄1 shU1 sh Ū1 + i|m|4λ̄1 shU2 sh Ū2









,

N3 = m̄(λ1 − λ̄1)(−i sh U1 ch Ū2 + |m|2 ch U1 sh Ū2), (4.23)

~Y again given in (3.1), and the denominator

D = −|m|2(ch U1 ch Ū1 + ch U2 ch Ū2) + shU1 sh Ū1 + |m|4 shU2 sh Ū2. (4.24)

In these expressions m and m̄ are as in (3.10), with

U1 = z/m + mz̄, U2 = (z/m − mz̄)/i. (4.25)

The real embedding coordinates ~Y ′ of the dressed solution may then be extracted

from (4.2). It is straightforward, though somewhat tedious, to directly verify that the

resulting ~Y ′ satisfies the equations of motion (2.2) and the Virasoro constraints (2.3),

providing a check on our application of the dressing method.
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A. Conventions

Here we summarize the standard conventions for global AdS3 that we have used in preparing

figures 1 and 2. We parametrize the SU(1,1) group element (2.9) as

g =

(

e+iτ sec θ e+iφ tan θ

e−iφ tan θ e−iτ sec θ

)

, (A.1)

where τ is global time, φ is the azimuthal angle, and θ runs from 0 in the interior of the

AdS3 cylinder to π/2 at the boundary of AdS3. In terms of these quantities the parametric

plots in figures 1 and 2 have Cartesian coordinates

(x, y, z) = (θ cos φ, θ sin φ, τ) (A.2)

and the boundary of AdS3 is the cylinder x2 + y2 = (π/2)2.
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